Автор Тема: Задачи маршрутизации адаптировали к квантовым вычислениям  (Прочитано 97 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Онлайн Arkadiy

  • Эксперт
  • *****
  • Сообщений: 23 136
  • Репутация: +106/-48
  • Пол: Мужской

Ученые исследовали новый способ решения проблемы малого числа кубитов квантовых вычислителей для решения реальных оптимизационных задач. Они пошли не по пути увеличения мощности компьютеров, а решили подстраивать формулировки решаемых ими задачи в нужном направлении. Исследователи показали, как квантовый компьютер может справиться с разными вариациями задачи маршрутизации транспорта.

Работа опубликована в журнале IEEE Transactions on Quantum Engineering.

Одними из самых сложных с точки зрения классических вычислителей и наиболее перспективными с точки зрения квантовых можно назвать задачи, принадлежащие классу квадратичной неограниченной бинарной оптимизации (QUBO, quadratic unbounded binary optimization). Но важнее всего то, что эти оптимизационные задачи встречаются в реальной жизни — от экономики и финансов до машинного обучения. Поэтому их исследование и развитие возможностей квантовых вычислений для решения может принести видимую пользу.

Переменные в таких задачах могут принимать значения 0 или 1 (бинарные), а цель задачи — оптимизация какой-нибудь заданной функции. Обычно, нужно что-то минимизировать (например, время, расходы, расстояние) или максимизировать (прибыль, заполнение рюкзака) и при этом соблюдать необходимые условия.

Один из старейших примеров оптимизационной задачи — задача коммивояжера. Коммивояжер выезжает из своего города, направляется по делам в разные города и хочет знать оптимальный маршрут для того, чтобы попасть в каждый город и вернуться обратно выгоднее всего. Критериями выгодности могут быть время, расстояние, стоимость поездки или все вместе.

Если перевести задачу на математический язык, то получится граф, вершины которого — города, грани — дороги между ними, а их веса могут быть расстоянием между городами, стоимостью билета или прибылью, которую можно получить в городе. Чем больше городов, тем больше вариантов путей есть у коммивояжера. Для 4 городов помимо города старта число вариантов обхода составит 4! = 24, а для 10 уже 10! = 3628800.

Но это еще не самое страшное, потому что из-за наличия условий на путешествие коммивояжера, вероятность того, что найдется хоть какое-то решение, оказывается очень маленькой. Для решения задачи нужно не просто какое-то, но оптимальное решение, поэтому перебор вариантов на классическом компьютере оказывается долгим и неэффективным.

Интересным остается вопрос о том, как в это все вписать квантовые компьютеры. Дело в том, что даже для решения оптимизационной задачи в классическом мире нужно сформулировать ее математически — перевести все условия в формулы и сформулировать целевую функцию, которую необходимо минимизировать (или максимизировать). Квантовые вычислители умеют работать с гамильтонианами, поэтому перед их запуском нужно перевести условие задачи с классического языка на квантовый.

Расширенным и прикладным вариантом задачи коммивояжера можно считать задачу маршрутизации транспорта. Именно для нее исследователи из ExxonMobil и IBM Quantum под руководством Донни Гринбера (Donny Greenberg) сформулировали разные варианты постановки задачи, перевели их на квантовый язык и показали, как квантовый вычислитель сможет их решить.

Оффлайн Литератор

  • Эксперт
  • *****
  • Сообщений: 13 194
  • Репутация: +45/-15

Расширенным и прикладным вариантом задачи коммивояжера можно считать задачу маршрутизации транспорта. Именно для нее исследователи из ExxonMobil и IBM Quantum под руководством Донни Гринбера (Donny Greenberg) сформулировали разные варианты постановки задачи, перевели их на квантовый язык и показали, как квантовый вычислитель сможет их решить.
Транспортную задачу мы успешно решаем начиная с 60-х годов прошлого столетия. Теперь с помощью квантовых вычислителей. Ура!